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Talk outline

A) Introduction to self-force
B) Self-force in black hole scattering
C) Frequency-domain appproach

D) Ongoing work
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PART A: Introduction to self-force

Reviews:
L. Barack & A. Pound, Self-force and radiation reaction in general relativity, 2019
Rep. Prog. Phys. 82 016904 [arXiv:1805.10385]

E. Poisson, A. Pound & |. Vega, The Motion of Point Particles in Curved
Spacetime, Living Rev. Relativ. 14, 7 (2011) [arXiv:1102.0529]
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The 2-body problem in GR: approaches
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Image credit: L. Barack & A. Pound

Chris Whittall (Southampton) Self-force in Scattering CERN 14th Dec 2023



Extreme mass ratio inspirals (EMRIs)

@ Highly asymmetric compact
binaries. Typical mass ratios

10Ms,

~—2 =10« 1
77 106M, <

(1)
@ Inspiral slow compared to orbital
periods:

TRR ~ Torb/q > Torb- (2)

@ Large number of gravitational
wavecycles in LISA band before
merger:

Nog, ~ 1/q ~ 10°.  (3)
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Self-force in Scattering

Created using KerrGeodesics package from BHP toolkit

@ Orbital dynamics complicated.
Geodesics tri-periodic and
generically ergodic.

@ EMRIs offer a precision probe of

strong-field geometry around
black-holes.

CERN 14th Dec 2023



Self-force principles
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@ Motion of small body given effective representation in background
spacetime of the larger object.

@ No need for ad hoc regularisation procedures. EOM derived using
matched asymptotic expansions

@ No need to assume a point-particle description; effective
point-particle description is derived.
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1SF equation of motion

@ Metric perturbation split into “direct”
and “tail” contributions:

ghs” = gos + IO AL (4)

Curvature

@ Only hgaﬂﬂ contributes to the self-force:

D2z ;
m-—iz = mvePThg ) Selfs ()
where
1

VOIhy = = (877 + u"u?) Wi’ (2Vshs, — Viahis).  (6)
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Computational approach: mode-sum regularisation

@ Singular field subtracted mode-by-mode in a spherical harmonic
expansion around the large BH:

Fself(T) = mi [(Vhret)e . (Vhdirect>€:| (7)
(=0 z(7)
=3 [m(vr)|
=0

o) — A2l = B(z) = C(2)/¢]| — D(2).

@ Regularization parameters: derived analytically for generic Kerr orbits.

@ Numerical input: modes of hgeﬁt calculated numerically by solving
perturbation equations with point-particle source and retarded BCs.

@ Can accelerate convergence by subtracting additional parameters.
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PART B: Self-force in black hole scattering

L. Barack & O. Long, Self-force correction to the deflection angle in black-hole
scattering: A scalar charge toy model, Phys. Rev. D 106 104031 (2022)
[arXiv:2209.03740].

L. Barack, Z. Bern, E. Herrmann, O. Long, J. Parra-Martinez & R. Roiban, M.
Ruf, C. Shen, M. Solon, F. Teng & M. Zeng, Comparison of post-Minkowskian
and self-force expansions: Scattering in a scalar charge toy model, Phys. Rev. D
108 024025 (2023) [arXiv:2304.09200].
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Scatter orbits

Particle starts at radial infinity at early times with velocity v and impact
parameter b:

b=_lim_ry(r)sin lgp(r) — pp(—o0)|. (8)

Provided b > b.(v), particle scatters off central black hole, approaching to
within periapsis distance rpin.
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Why study scattering?

@ Theoretical grounds:

© Can probe sub-ISCO region even at low velocities; down to light ring
r = 3M with large v.
@ Scattering angle x(b, v) defined unambiguously, even with radiation.

@ Boundary-to-bound relations between scatter and bound orbit
observables, derived using effective-field-theory.

@ xisr determines full conservative dynamics to 4PM, valid at any
mass ratio. Extend to 6PM with yogp . PM expansion of x
can be used to calibrate effective-one-body models

@ Can compare SF results with analytical PM for mutual validation;
benchmark/calibrate PM in strong-field.
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Self-force corrections to the scatter angle

@ The self-force correction is defined by

ox = X(b7 V) - XO(b7 V) = O(q)7 (9)

where xo := limg_.g X is the scatter angle of the geodesic with the
same (b, v).

@ Correction expressed as integral over the worldline,

+o0
Sy = / A (7: b, v)F,(7)dr. (10)

[e.9]

At O(q), integral may be evaluated along limiting geodesic.
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Conservative and dissipative effects

We can split the self-force into conservative and dissipative pieces,

«a 1 re adv

Fcons = 5 [ self(h t) + F, (h d )i| ) (11)
a 1 re adv

Fdiss = E [ self(h t) - sel (h d ):| ) (12)

and consider their effects separately,
+oo
5 Xcoms = / A (b, v)FE, (r)dr, (13)
0

+oo .
S xetne = / ADSS (72 b V)FS (7)dT. (14)
0
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Scalar-field toy model in Schwarzschild

@ Toy model: scalar charge @ with mass m moving in a background
Schwarzschild spacetime of mass M:

oo 54 (x — z(T))

VIV,0 = —4r Q/ o= 2m)) (15)
v —8(x
Dp o al «
= Qveotal — Fa . (16)

@ Scalar-field calculation captures the main challenges of gravitational
self-force calculations, in a simpler overall framework.

e Parameter qs := Q?/(mM) < 1 takes the role of the mass ratio.
Integral formulae for § essentially unchanged.

e First numerical calculations by Long & Barack using their (1+1)D
time-domain code for the self-force.
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Early scatter angle results [Barack & Long 2022]
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PM comparisons [Barack et al 2023]
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PM comparisons [Barack et al 2023]
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PART C: Frequency-domain approach

C. Whittall & L. Barack, Frequency-domain approach to self-force in hyperbolic
scattering, Phys. Rev. D 108 064017 (2023) [arXiv:2305.09724].
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Frequency-domain methods

o Fields are additionally decomposed into Fourier harmonics, e.g.

+oo .
Yim(t, r) = Vome(r)e "t (17)

e Many frequency-domain (FD) self-force codes in existence for bound
orbits. Valued for their accuracy and efficiency.

@ FD methods expected to retain these advantages when moving to
unbound orbits, but challenges must be overcome:

» Continuous spectrum.
» Source with non-compact radial support.
» Cancellation during TD reconstruction.

We use a scalar-field toy model in Schwarzschild to investigate and
manage these problems.
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Extended homogeneous solutions [Barack, Ori & Sago 2008]

@ Gibbs phenomenon: impractical to reconstruct SF modes from
physical inhomogeneous solution ¥gm,(r)-

@ Method of Extended Homogeneous Solutions restores exponential,
uniform convergence.
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Extended homogeneous solutions: unbound orbits

@ Physical time-domain field is reconstructed piecewise from
homogeneous solutions.

e For example, SF modes in the “internal” region r < ry(t)
reconstructed from

77Zf_mw(r) = mewfw( ) (18)

where normalisation the factor C, is such that EHS and physical
field coincide in r < rfpin.

@ For unbound orbits, EHS cannot be used to reconstruct field in the
“external” region r > rp(t).

We use EHS and one-sided mode-sum regularisation

Chris Whittall (Southampton) Self-force in Scattering CERN 14th Dec 2023 21 /32



Truncation problem

@ Normalisation factor C,  can be expressed as an integral over the
(unbounded) radial extent of the orbit:

- - /%()5()
mw , W&uf(r,)

@ Slow, oscillatory convergence: problems truncating at finite fpax.

dr'. (19)

min

. —— IBP4corré
@ Developed solutions: 1074 — Bpacorr0
. . —— IBPOcorré
@ Tail corrections: use large-r 1021 IBPOCOITO
approximation to integrand to  _
o
derive analytical estimates to £
. 3» 10,13 IBP4corr6 vs IBP4corr0
the neglected tail. g
E 10715
@ Integration by parts (IBP): 10-7]
use IBP to increase decay rate Lo
of integrand. | | % 2e 21| 28 29 |
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C, . spectra

Imw

Example C,,., spectra for orbit £ = 1.1, nyi, = 4M. Note QNM features.
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Self-force: regularisation tests
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Cancellation problem

@ Significant cancellation 1004 o r,=4.02Minbound ]
between low-frequency rp = 6M inbound R
108{ ® fp=10M inbound .

modes at large £ and r. . 1= 15M inbound

10° 1 . —
e Caused by unphysical ® R
growth of the EHS field. 104 e
1021 N

@ Problem intrinsic to EHS
approach. Afflicts
scatter calculations more p
severely than bound

N e
.
.

orbit case. Partially mitigate using dynamic /-truncation
in the mode-sum.
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Self-force: along orbit
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Gradual loss of accuracy along orbit due to progressive loss of /-modes.
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PART D: Ongoing work
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Analytical calculation at large r (preliminary)
@ Supplement FD code with analytic expansion of the SF in 1/r.

@ Makes use of a hierarchical expansion,

Yem(u, v) = Zw/v u, v) (20)
¢0,uv + VO( )1/]0 = 5(“7 V)v (21)
wN,uv + Vo(f)l/fN = _5V(r)¢N—1 (N > 0)7 (22)

where Vp(r) approximates asymptotic behaviour of exact potential

V(r), and 6V(r) := V(r) — Vo(r).

@ g (complete) does not contribute to SF; 1 (underway) gives leading
large-r behaviour.
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PM resummation (preliminary)

@ As b — b.(v),

Xo ~ A(v) log (1 — bcl()v)) + const(v), dxisF ~ gsB(v)

A(v) known analytically; B(v) inferred from SF calculations.

@ Consider the function

WM _ 4 [bg (1 b1 —ZSB/A)> . i <bc(1 —gsB/A)>k

o We define the resummed scatter angle ("M := "M  ynPM

» Agrees with x"™M through nPM order.
» Matches the OSF and 1SF divergences near separatrix.
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PM resummation (preliminary)
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PM resummation: additional developments (preliminary)

o High velocities: large-¢ modes
become more important at
higher velocities.

>

Possibly related to relativistic
beaming of radiation.

» Effect strongest near periapsis.
» FD code can get ¢ > 15

modes near periapsis.
Developing FD/TD hybrid
method.

Regularised £-mode
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e Direct approach: express B(v) as integral over critical orbit,
b= b.(v).

> Only need to calculate SF along critical orbit. More accurate and

efficient than fitting.

» FD approach needs to handle a discrete, distributional piece of the
spectrum arising from asymptotic circular orbit.
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Prospects

@ Analytical results for SF at large r: useful for both TD and FD
approaches.

@ Improved TD methods also under development, including spectral
methods with hyperboloidal slicing and compactification.

@ Routes to gravity?
» Direct Lorenz-gauge calculation
» Radiation-gauge reconstruction
> Lorenz-gauge reconstruction

@ Second order?

» Easier than bound? No disparate timescales.
» Would give conservative dynamics to 6PM.
» Some way off.
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