Self-force in Hyperbolic Scattering: a Frequency Domain Approach

Chris Whittall Supervisor: Leor Barack

23rd International Conference on GR and Gravitation 5th July 2022

GR23

05/07/22

Scatter orbits as strong-field probe of GR

Scatter angle defined by

$$\delta \varphi := \varphi_{out} - \varphi_{in} - \pi$$

= $\delta \varphi^{(0)} + \eta \delta \varphi^{(1)} + \eta^2 \delta \varphi^{(2)} + \dots$ (1)

Motivations:

- Conservative PM dynamics can be inferred from self-force scatter calculations, valid at *all* mass ratios. [Damour 2020]
- Benchmarking PM results in the strong-field regime.
- Strong-field probe of GR potential.

- Comparisons with quantum amplitude methods.
- Calibrate effective-one-body models.
- Hence inform an accurate universal model of BBH inspirals, suitable for GW searches.

Frequency domain

- FD codes exist to calculate first-order GSF along generic bound Kerr geodesics [Van de Meent 2017]. Several challenges when moving to unbound orbits.
- Despite this, we are interested in frequency-domain methods due to potentially higher precision and efficiency.
- We work with scalar field toy model in Schwarzschild to investigate problems and solutions:
 - Continuous spectra
 - UV problem near the particle
 - Slowly convergent radial integrals

GR23

Field equation

The scalar field equation is given by

$$\nabla_{\mu}\nabla^{\mu}\Phi = -4\pi T \tag{2}$$

and the scalar charge density T is that of a point particle. We separate into spherical and Fourier harmonics:

$$\Phi = \int d\omega \sum_{\ell,m} \frac{1}{r} \psi_{\ell m \omega} Y_{\ell m}(\theta,\varphi) e^{-i\omega t}, \qquad (3)$$

and the equation of motion becomes

$$\frac{d^2\psi_{\ell m\omega}}{dr_*^2} - (V_\ell(r) - \omega^2)\psi_{\ell m\omega} = S_{\ell m\omega}(r).$$
(4)

Inhomogeneous solution

For $\omega \neq 0$ variation of parameters gives us the inhomogeneous field

$$\psi_{\ell m \omega}(r) = \psi_{\ell m \omega}^{+}(r) \int_{r_{min}}^{r} \frac{\psi_{\ell m \omega}^{-}(r') S_{\ell m \omega}(r')}{W_{\ell m \omega}} \frac{dr'}{f(r')} + \psi_{\ell m \omega}^{-}(r) \int_{r}^{\infty} \frac{\psi_{\ell m \omega}^{+}(r') S_{\ell m \omega}(r')}{W_{\ell m \omega}} \frac{dr'}{f(r')},$$
(5)

where for $\omega \neq 0$ the homogeneous solutions $\psi^{\pm}_{\ell m \omega}$ are defined by BCs:

$$\psi^{-}_{\ell m \omega}(r) \sim e^{-i\omega r_{*}}$$
 as $r_{*} \longrightarrow -\infty$ (6)

$$\psi^+_{\ell m \omega}(r) \sim e^{+i\omega r_*} \quad \text{as } r_* \longrightarrow +\infty.$$
 (7)

Extended homogeneous solutions

- Delta function source causes slow, non-uniform convergence of Fourier series/integral near the worldline (Gibbs phenomenon).
- MEHS: express time domain field Φ_{lm}(t, r) in terms of analytic functions on either side of the worldline.

$$r\Phi_{\ell m}(t,r) = \tilde{\psi}^+_{\ell m}(t,r)\Theta(r-r_p(t)) + \tilde{\psi}^-_{\ell m}(t,r)\Theta(r_p(t)-r).$$
(8)

[Barack, Ori, Sago 2008]

For bound orbit,

$$\tilde{\psi}_{\ell m \omega}^{\pm}(r) := \psi_{\ell m \omega}^{\pm}(r) \int_{r_{min}}^{r_{max}} \frac{\psi_{\ell m \omega}^{\mp}(r') S_{\ell m \omega}(r') dr'}{W_{\ell m \omega} f(r')}.$$
(9)

EHS: unbound case

- EHS method relies on the existence of vacuum regions $r \ge r_{max}$ and $r \le r_{min}$ where the EHS and physical fields coincide.
- Agreement throughout the domain is deduced using an analyticity argument.
- For the unbound case, we no longer have the $r \ge r_{max}$ vacuum region. But we do still have the vacuum region $r \le r_{min}$.
- Attempts to apply a (modified) form of EHS outside the orbit have not been successful so far.

We can only use EHS to reconstruct the field inside the orbit.

Slowly converging radial integrals

$$C_{\ell m\omega}^{-} := \int_{r_{min}}^{+\infty} \frac{\psi_{\ell m\omega}^{+}(r) \cos[\omega t_{p}(r) - m\varphi_{p}(r)]}{r|u^{r}(r)|} dr.$$
(10)

- Integrand singular at r_{min} . Split integration region and use integration variable χ near periapsis, r at distance.
- The integrand behaves like oscillations/r at large r. Hence we have to integrate out to great distance to get convergence.
- At higher frequencies, need to integrate over many wavecycles, at great cost. A single integral can take > 30s if done naively.

Truncating the integral: problems

- Truncating at such radii causes issues in the tail of the spectrum.
- Suppressing this requires *r_{max}* to increase by orders of magnitude. Not feasible due to runtime cost.
- Need to increase decay rate, speed up integration, or approximate tail. All are possible.

Figure: Red curve shows effect of truncating integral at $r_{max} = 1980M$. With new techniques, we obtain an improved spectrum

Analytical approximations to the tail

The integrand of $C^{-}_{\ell m \omega}$,

$$J_{\ell m\omega}(r) := \frac{1}{2} \sum_{\sigma=\pm 1} \frac{\psi_{\ell l m\omega}^+(r') \exp\left[i\sigma\left(\omega t_p(r') - m\varphi_p(r')\right)\right]}{r' |u^r(r')|}, \quad (11)$$

has an expansion as $r \to \infty$. This series can be integrated to obtain an approximation to the neglected tail,

$$\int_{r_{max}}^{+\infty} J_{\ell m\omega}(r) dr \approx \frac{1}{2\sqrt{E^2 - 1}} \sum_{\sigma=\pm 1}^{N} \sum_{n=0}^{N} \lambda_{\sigma}^{(n)} e^{i\sigma\Delta_{\infty}^{(0)}} r_{max}^{a(n)} z^{-a(n)} \Gamma[a(n), z].$$
(12)

This is very fast to evaluate. The limiting factor is deriving expressions for the $\lambda_{\sigma}^{(n)}$ in advance.

Analytical approximations to the tail: impact

Have corrections up to 6th order, but this is not enough.

Integration by parts (1)

Integration by parts can be used to increase the rate of convergence.

We can rewrite the integrand

$$J_{\ell m\omega}(r) := \frac{1}{2} \sum_{\sigma=\pm 1} e^{i\Omega_{\sigma}r} K^{\sigma}_{\ell m\omega}(r), \qquad (13)$$

where $\Omega_\sigma:=\omega(1+\sigma/v)$ and the function $K^\sigma_{\ell m \omega}$ has the asymptotics

$$K^{\sigma}_{\ell m \omega} \sim r^{i\omega(1+\sigma B)-1}$$
(14)

as $r \to \infty$. Then we have the property

$$\frac{d^{N}K^{\sigma}_{\ell m\omega}}{dr^{N}} = O\left(\frac{1}{r^{N+1}}\right)$$
(15)

12 / 18

as $r \to \infty$.

Integration by parts (2)

Applying integration by parts N + 1 times,

$$C_{\ell m\omega}^{-(r)} = \frac{1}{2} \sum_{\sigma=\pm 1}^{N} \left\{ \sum_{n=0}^{N} \left[\left(\frac{i}{\Omega_{\sigma}} \right)^{n+1} e^{i\Omega_{\sigma}r_{cut}} \mathcal{K}_{\ell m\omega}^{\sigma(n)}(r_{cut}) \right] + \left(\frac{i}{\Omega_{\sigma}} \right)^{N+1} \int_{r_{cut}}^{+\infty} e^{i\Omega_{\sigma}r} \mathcal{K}_{\ell m\omega}^{\sigma(N+1)}(r) dr \right\}.$$
(16)

Integration by parts can be applied as many times as required. Limited only by need to derive expressions for the derivatives $K_{\ell m\omega}^{\sigma(n)}$.

We have implemented 4 iterations of IBP, i.e. truncation error $O(r_{max}^{-5})$.

Improved spectrum

Further efficiencies

- Clenshaw-Curtis quadrature suited to integrals with a sine/cosine weight function. Reduces runtime to 1-2s for a single integral, increasing only slowly with ω .
- Additionally, we can accurately interpolate $C^-_{\ell m\omega}$ over frequency, reducing number of integrals we need to evaluate.
- Calculation of integrals largely independent of each other \implies highly parallelisable.

Self-force calculation: *t*-component

Calculation of the self-force passes regularisation tests

Whittall & Barack (Univ. of Soton) FD Approach to Self-Force in Scattering

GR23 05/07/22

Self-force calculation: other components

The other components also pass regularisation tests. These are more challenging to calculate due to low-frequency contributions.

Summary and outlook

We have:

- Developed methods to improve the convergence and runtime of the integrals $C^-_{\ell m \omega}$.
- Demonstrated the ability to accurately interpolate $C^-_{\ell m \omega}$ over frequency.
- Obtained caculations of the self-force at selected points along the orbit.

Next steps:

- Resolve remaining issues with isolated modes.
- Scatter-angle calculation.
- Other observables e.g. time delay.
- Comparisons with PM results.

05/07/22