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Scatter orbits as strong-field probe of GR

Scatter angle defined by

δϕ := ϕout − ϕin − π
= δϕ(0) + ηδϕ(1) + η2δϕ(2) + ...

(1)

Motivations:

Conservative PM dynamics can
be inferred from self-force
scatter calculations, valid at all
mass ratios. [Damour 2020]

Benchmarking PM results in the
strong-field regime.

Strong-field probe of GR
potential.

Comparisons with quantum
amplitude methods.

Calibrate effective-one-body
models.

Hence inform an accurate
universal model of BBH
inspirals, suitable for GW
searches.
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Frequency domain

FD codes exist to calculate first-order GSF along generic bound Kerr
geodesics [Van de Meent 2017]. Several challenges when moving to
unbound orbits.

Despite this, we are interested in frequency-domain methods due to
potentially higher precision and efficiency.

We work with scalar field toy model in Schwarzschild to investigate
problems and solutions:

Continuous spectra
UV problem near the particle
Slowly convergent radial integrals
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Field equation

The scalar field equation is given by

∇µ∇µΦ = −4πT (2)

and the scalar charge density T is that of a point particle. We separate
into spherical and Fourier harmonics:

Φ =

∫
dω
∑
`,m

1

r
ψ`mωY`m(θ, ϕ)e−iωt , (3)

and the equation of motion becomes

d2ψ`mω
dr2
∗
− (V`(r)− ω2)ψ`mω = S`mω(r). (4)
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Inhomogeneous solution

For ω 6= 0 variation of parameters gives us the inhomogeneous field

ψ`mω(r) = ψ+
`mω(r)

∫ r

rmin

ψ−`mω(r ′)S`mω(r ′)

W`mω

dr ′

f (r ′)

+ ψ−`mω(r)

∫ ∞
r

ψ+
`mω(r ′)S`mω(r ′)

W`mω

dr ′

f (r ′)
,

(5)

where for ω 6= 0 the homogeneous solutions ψ±`mω are defined by BCs:

ψ−`mω(r) ∼ e−iωr∗ as r∗ −→ −∞ (6)

ψ+
`mω(r) ∼ e+iωr∗ as r∗ −→ +∞. (7)
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Extended homogeneous solutions

Delta function source causes slow, non-uniform convergence of
Fourier series/integral near the worldline (Gibbs phenomenon).

MEHS: express time domain field Φlm(t, r) in terms of analytic
functions on either side of the worldline.

rΦ`m(t, r) = ψ̃+
`m(t, r)Θ(r − rp(t)) + ψ̃−`m(t, r)Θ(rp(t)− r). (8)

[Barack, Ori, Sago 2008]

For bound orbit,

ψ̃±`mω(r) := ψ±`mω(r)

∫ rmax

rmin

ψ∓`mω(r ′)S`mω(r ′)dr ′

W`mωf (r ′)
. (9)
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EHS: unbound case

EHS method relies on the existence of vacuum regions r ≥ rmax and
r ≤ rmin where the EHS and physical fields coincide.

Agreement throughout the domain is deduced using an analyticity
argument.

For the unbound case, we no longer have the r ≥ rmax vacuum
region. But we do still have the vacuum region r ≤ rmin.

Attempts to apply a (modified) form of EHS outside the orbit have
not been successful so far.

We can only use EHS to reconstruct the field inside the orbit.
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Slowly converging radial integrals

C−`mω :=

∫ +∞

rmin

ψ+
`mω(r) cos[ωtp(r)−mϕp(r)]

r |ur (r)|
dr . (10)

Integrand singular at rmin. Split integration region and use integration
variable χ near periapsis, r at distance.

The integrand behaves like oscillations/r at large r . Hence we have to
integrate out to great distance to get convergence.

At higher frequencies, need to integrate over many wavecycles, at
great cost. A single integral can take > 30s if done naively.
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Truncating the integral: problems

Truncating at such radii
causes issues in the tail of
the spectrum.

Suppressing this requires
rmax to increase by orders
of magnitude. Not feasible
due to runtime cost.

Need to increase decay rate,
speed up integration, or
approximate tail. All are
possible.

Figure: Red curve shows effect of truncating
integral at rmax = 1980M. With new techniques,
we obtain an improved spectrum
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Analytical approximations to the tail

The integrand of C−`mω,

J`mω(r) :=
1

2

∑
σ=±1

ψ+
`lmω(r ′) exp [iσ (ωtp(r ′)−mϕp(r ′))]

r ′ |ur (r ′)|
, (11)

has an expansion as r →∞. This series can be integrated to obtain an
approximation to the neglected tail,∫ +∞

rmax

J`mω(r)dr ≈ 1

2
√
E 2 − 1

∑
σ=±1

N∑
n=0

λ(n)
σ e iσ∆

(0)
∞ r

a(n)
max z

−a(n)Γ[a(n), z ].

(12)

This is very fast to evaluate. The limiting factor is deriving expressions for

the λ
(n)
σ in advance.
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Analytical approximations to the tail: impact

Have corrections up to 6th order, but this is not enough.
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Integration by parts (1)

Integration by parts can be used to increase the rate of convergence.

We can rewrite the integrand

J`mω(r) :=
1

2

∑
σ=±1

e iΩσrKσ
`mω(r), (13)

where Ωσ := ω(1 + σ/v) and the function Kσ
`mω has the asymptotics

Kσ
`mω ∼ r iω(1+σB)−1 (14)

as r →∞. Then we have the property

dNKσ
`mω

drN
= O

(
1

rN+1

)
(15)

as r →∞.
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Integration by parts (2)

Applying integration by parts N + 1 times,

C
−(r)
`mω =

1

2

∑
σ=±1

{
N∑

n=0

[(
i

Ωσ

)n+1

e iΩσrcutK
σ(n)
`mω (rcut)

]

+

(
i

Ωσ

)N+1 ∫ +∞

rcut

e iΩσrK
σ(N+1)
`mω (r)dr

}
. (16)

Integration by parts can be applied as many times as required. Limited

only by need to derive expressions for the derivatives K
σ(n)
`mω .

We have implemented 4 iterations of IBP, i.e. truncation error O(r−5
max).
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Improved spectrum
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Further efficiencies

Clenshaw-Curtis quadrature suited to integrals with a sine/cosine
weight function. Reduces runtime to 1-2s for a single integral,
increasing only slowly with ω.

Additionally, we can accurately interpolate C−`mω over frequency,
reducing number of integrals we need to evaluate.

Calculation of integrals largely independent of each other =⇒ highly
parallelisable.
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Self-force calculation: t-component

Calculation of the self-force passes regularisation tests
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Self-force calculation: other components

The other components also pass regularisation tests. These are more
challenging to calculate due to low-frequency contributions.
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Summary and outlook

We have:

Developed methods to improve the convergence and runtime of the
integrals C−`mω.

Demonstrated the ability to accurately interpolate C−`mω over
frequency.

Obtained caculations of the self-force at selected points along the
orbit.

Next steps:

Resolve remaining issues with isolated modes.

Scatter-angle calculation.

Other observables e.g. time delay.

Comparisons with PM results.
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