Self-force scattering in the strong and weak field arXiv:2406.08363

Chris Whittall with Oliver Long & Leor Barack

27th Capra Meeting National University of Singapore 17th June 2024

Whittall, Long and Barack

Self-force scattering

NUS 17/06/2024 1 / 17

Scalar-field self-force and scattering: recap

- Scatter orbits parameterised by velocity at infinity v and impact parameter b > b_c(v).
- Using scalar-field toy model in Schwarzschild

$$abla \Phi = -4\pi q \int rac{\delta^4 (x^lpha - x^lpha_p(au))}{\sqrt{-g}} d au,
onumber \ u^eta
abla_eta u^lpha = q (g^{lphaeta} + u^lpha u^eta)
abla_eta \Phi^R := \epsilon F^lpha,$$

where $\epsilon := q^2/\mu M \ll 1$ is the expansion parameter.

= 0.50h = 8.81M

SF scatter angle correction

• Scatter angle expanded

$$\chi(\mathbf{v}, \mathbf{b}) = \chi^{0\mathrm{SF}}(\mathbf{v}, \mathbf{b}) + \epsilon \chi^{1\mathrm{SF}}(\mathbf{v}, \mathbf{b}) + O(\epsilon^2),$$

- Split between geodesic term $\chi^{0\rm SF}$ and self-force correction $\chi^{1\rm SF}$ defined at fixed (v, b).
- 1SF correction expressed as integral of SF along background geodesic [Barack & Long 22]

$$\chi^{1\text{SF}} = \int_{-\infty}^{+\infty} \left[\mathcal{G}_{\mathsf{E}}(\tau) \mathcal{F}_{t}(\tau) - \mathcal{G}_{\mathsf{L}}(\tau) \mathcal{F}_{\varphi}(\tau) \right] d\tau$$

Numerical platforms

- **Time-domain** code (see previous talk by O. Long):
 - Finite differences, null grid.
 - Performed first calculations of χ^{1SF} in [Barack & Long 22].
 - Typically limited to $\ell_{\rm max} = 15$.

- Frequency-domain code:
 - SF reconstructed from frequency modes of an extended homogeneous solution.
 - Highly accurate near periapsis, access to at least $\ell_{\rm max}=25.$
 - \blacktriangleright Loss of precision for large- ℓ modes at larger radii; ℓ_{max} must be reduced rapidly.

FD code more accurate than TD in strong-field, but loses precision at larger radii

PM expansion of $\chi^{1\rm SF}$

Analytical progress using post-Minkowskian expansion,

$$\chi^{1\text{SF}} = \sum_{k=2}^{\infty} \chi_k^{1\text{SF}}(v) \left(\frac{GM}{b}\right)^k.$$

- Coefficients known through 4PM order for scalar-field. [Gralla & Lobo 22, Barack & Long 22, Barack et al 23, Bini et al 24]
- Good agreement found with numerical self-force. [Barack et al 23]
- Since then, χ_4^{cons} determined completely using PM/PN calculation (see talk by D. Usseglio after coffee break).

1SF correction: examples

Figure: comparison between numerical SF scatter angles and successive PM approximations ($\nu = 0.5$)

Transition to plunge

 Separatrix b = b_c(v) divides scatter (b > b_c(v)) from plunge (b < b_c(v)).

$$\delta b := b - b_c(v)$$

- Each critical "geodesic"
 b = b_c(v) has two branches:
 - Inbound: begins at infinity, is captured into circular orbit.
 - Outbound: begins as circular orbit, escapes to infinity.
- Conservative/dissipative forces obtained from combinations of SF along inbound/outbound branches.

Figure: scatter geodesics in the $b \to b_c(v)$ limit.

Singularity structure of $\chi^{\rm 0SF}$ and $\chi^{\rm 1SF}$

• Log divergence in $\chi^{\rm OSF}$:

$$\chi^{0SF} \sim A_0(v) \log\left(rac{\delta b}{b_c(v)}
ight) ext{ as } b o b_c(v),$$

where, recall, $\delta b := b - b_c(v)$, and

$$A_0(v) = -\left(1 - \frac{12M^2(1-v^2)}{v^2b_c(v)^2}\right)^{1/2}.$$

• Faster divergence at 1SF,

$$\chi^{\rm 1SF} \sim A_1({\bf v}) \frac{b_c({\bf v})}{\delta b},$$
 as $b \to b_c({\bf v}).$

Integral expression for $A_1(v)$ along critical orbit Divergence parameters $A_1^{cons/diss}(v)$ can be expressed

$$egin{split} \mathcal{A}_1^{\mathrm{cons}}(\mathbf{v}) &= -rac{1}{b_c(\mathbf{v})} \int_{-\infty}^{+\infty} \left(c_E F_t^{\mathrm{cons}} + c_L F_arphi^{\mathrm{cons}}
ight) d au, \ \mathcal{A}_1^{\mathrm{diss}}(\mathbf{v}) &= rac{1}{b_c(\mathbf{v})} \int_{-\infty}^{+\infty} \left(c_E F_t^{\mathrm{diss}} + c_L F_arphi^{\mathrm{diss}}
ight) d au, \end{split}$$

where the integrals and self-forces are evaluated on the *outbound* critical orbit and $c_{E/L}$ are constants.

- Calculation confirms $1/\delta b$ divergence analytically.
- For each v, A₁^{cons}(v) and A₁^{diss}(v) obtained by SF calculation along only 2 orbits.
- Current codes unable to calculate SF along critical orbit. Use extrapolation from $b > b_c(v)$ instead.

SF-informed PM resummation

Introduce

$$\Delta\chi(v,b):=A_0\left[\log\left(1-rac{b_c(v)(1-\epsilon A_1/A_0)}{b}
ight)+\sum_{k=1}^4rac{1}{k}\left(rac{b_c(v)(1-\epsilon A_1/A_0)}{b}
ight)^k
ight]$$

• Resummed scatter angle:

$$\tilde{\chi}(\mathbf{v}, \mathbf{b}) := \chi_{4\mathrm{PM}}(\mathbf{v}, \mathbf{b}) + \Delta \chi(\mathbf{v}, \mathbf{b}).$$

- Matches $b \to \infty$ behaviour of χ through 4PM order.
- Matches $b \rightarrow b_c(v)$ behaviour at 0SF and 1SF.
- Similar to geodesic order approach introduced in [Damour & Rettegno 2023], but extended to 1SF.

Whittall, Long and Barack

High-velocity limit

- Large-*l* modes become more important at high velocities.
- Delayed transition to asymptotic behaviour in mode-sum.
 - Possibly associated with relativistic beaming.
- ℓ > 15 modes can contribute up to a few percent of the total SF.

Figure: regularised ℓ -mode contributions to $\nabla_t \Phi^R$ at given points along example low and high velocity orbits.

- Effect largest near periapsis, where FD code can handle $\ell_{max} > 15$.
- Motivated development of TD/FD hybrid approach.

Hybrid TD-FD model

Hybridisation at the level of the data:

- Run TD and FD codes separately.
- FD code output contains the value of ℓ_{max}^{FD} at each sample position along the orbit.
- FD self-force data used in region $r_{p} \leq r_{\rm switch}$ where $\ell_{\rm max}^{\rm FD} \geq 15$.
- TD data used elsewhere.

Figure: F_t along the orbit (v, b) = (0.7, 6.71307M) as

calculated using the TD, FD and hybrid methods.

Hybrid approach utilises the most accurate method in each region to construct an optimal SF data set.

Calculating $A_1(v)$ by extrapolation

• Fits performed in Mathematica, weighting each scatter angle by $1/\epsilon_{\rm num}^2.$

• Effect of varying number of points included in fit: investigated and incorporated into error bars on $A_1^{\rm cons/diss}$.

Figure: numerical results for $A_1(v)$ with quadratic best fit functions $A_1(v) \sim a + bv + cv^2$.

Resummation: 1SF scatter angle correction [OL, CW & LB 2406.08363]

Figure: the resummation procedure significantly improves agreement with the numerical SF data, even in the weak-field. (v = 0.5)

Whittall, Long and Barack

Self-force scattering

Resummation: total scatter angle [OL, CW & LB 2406.08363]

Figure: $\chi^{0SF} + 0.1\chi^{1SF}$ for v = 0.5. Our 1SF resummation improves upon the geodesic order resummation in the $\delta b \rightarrow 0$ limit.

Summary and outlook

Resummed PM provides semi-analytical model which is fast to evaluate and accurate in both strong and weak-field at 1SF.

Next steps:

- Direct calculation of $A_1(v)$ as integral over critical orbit should increase accuracy and decrease computational burden.
- Framework easily extends to gravity once GSF available.
- Ongoing work to obtain analytical results for SF at large radius.

