Self-force scattering in the strong and weak field arXiv:2406.08363

Chris Whittall with Oliver Long & Leor Barack

27th Capra Meeting National University of Singapore 17th June 2024

 Ω

Scalar-field self-force and scattering: recap

- Scatter orbits parameterised by velocity at infinity v and impact parameter $b > b_c(v)$.
- Using scalar-field toy model in Schwarzschild

$$
\nabla \Phi = -4\pi q \int \frac{\delta^4 (x^\alpha - x^\alpha_\rho(\tau))}{\sqrt{-g}} d\tau,
$$

$$
u^\beta \nabla_\beta u^\alpha = q(g^{\alpha\beta} + u^\alpha u^\beta) \nabla_\beta \Phi^R := \epsilon F^\alpha,
$$

where $\epsilon:=q^2/\mu{\cal M}\ll 1$ is the expansion parameter.

 $= 0.50$ $h = 8.81M$

SF scatter angle correction

• Scatter angle expanded

$$
\chi(v,b) = \chi^{\rm OSF}(v,b) + \epsilon \chi^{\rm 1SF}(v,b) + O(\epsilon^2),
$$

- Split between geodesic term χ^0SF and self-force *correction* χ^1SF defined at fixed (v, b) .
- 1SF correction expressed as integral of SF along background geodesic [Barack & Long 22]

$$
\chi^{\rm 1SF} = \int_{-\infty}^{+\infty} \left[\mathcal{G}_E(\tau) F_t(\tau) - \mathcal{G}_L(\tau) F_{\varphi}(\tau) \right] d\tau
$$

Numerical platforms

- \bullet Time-domain code (see previous talk by \circ . Long):
	- \blacktriangleright Finite differences, null grid.
	- ► Performed first calculations of χ^{1SF} in [Barack & Long 22].
	- \blacktriangleright Typically limited to $\ell_{\text{max}} = 15$.

- **Frequency-domain code:**
	- \triangleright SF reconstructed from frequency modes of an extended homogeneous solution.
	- \blacktriangleright Highly accurate near periapsis, access to at least $\ell_{\rm max} = 25$.
	- **In** Loss of precision for large- ℓ modes at larger radii; ℓ_{max} must be reduced rapidly.

FD code more accurate than TD in strong-field, but loses precision at larger radii

 200

K ロ ▶ | K 伺 ▶ | K ヨ ▶

PM expansion of $\chi^{1 \rm SF}$

Analytical progress using post-Minkowskian expansion,

$$
\chi^{\text{1SF}} = \sum_{k=2}^{\infty} \chi_k^{\text{1SF}}(v) \left(\frac{GM}{b}\right)^k.
$$

- Coefficients known through 4PM order for scalar-field. $G = 22$, Barack & Long 22, Barack et al 23, Bini et al 24]
- Good agreement found with numerical self-force. [Barack et al 23]
- Since then, $\chi_4^{\rm cons}$ determined completely using PM/PN calculation (see talk by D. Usseglio after coffee break).

1SF correction: examples

Figure: comparison between numerical SF scatter angles and successive PM approximations ($v = 0.5$) \leftarrow

Whittall, Long and Barack [Self-force scattering](#page-0-0) NUS 17/06/2024 6 / 17

 QQ

Transition to plunge

- \circ Separatrix $b = b_c(v)$ divides scatter $(b > b_c(v))$ from plunge $(b < b_c(v)).$
- Each critical "geodesic" $b = b_c(v)$ has two branches:
	- \triangleright Inbound: begins at infinity, is captured into circular orbit.
	- \triangleright Outbound: begins as circular orbit, escapes to infinity.
- Conservative/dissipative forces obtained from combinations of SF along inbound/outbound branches.

Figure: scatter geodesics in the $b \to b_c(v)$ limit.

Singularity structure of χ^OSF and χ^1SF

Log divergence in $\chi^{\rm OSF}$:

$$
\chi^{0SF} \sim A_0(v) \log \left(\frac{\delta b}{b_c(v)} \right) \text{ as } b \to b_c(v),
$$

where, recall, $\delta b := b - b_c(v)$, and

$$
A_0(v)=-\left(1-\frac{12M^2(1-v^2)}{v^2b_c(v)^2}\right)^{1/2}.
$$

• Faster divergence at 1SF,

$$
\chi^{1SF} \sim A_1(v) \frac{b_c(v)}{\delta b},
$$
 as $b \to b_c(v)$.

Integral expression for $A_1(v)$ along critical orbit Divergence parameters $A_1^{\rm cons/diss}$ $\frac{1}{1}$ ^{cons/uss} (v) can be expressed

$$
A_1^{\text{cons}}(v) = -\frac{1}{b_c(v)} \int_{-\infty}^{+\infty} \left(c_E F_t^{\text{cons}} + c_L F_\varphi^{\text{cons}} \right) d\tau,
$$

$$
A_1^{\text{diss}}(v) = \frac{1}{b_c(v)} \int_{-\infty}^{+\infty} \left(c_E F_t^{\text{diss}} + c_L F_\varphi^{\text{diss}} \right) d\tau,
$$

where the integrals and self-forces are evaluated on the *outbound* critical orbit and $c_{E/L}$ are constants.

- Calculation confirms $1/\delta b$ divergence analytically.
- For each v , $A_1^{\text{cons}}(v)$ and $A_1^{\text{diss}}(v)$ obtained by SF calculation along only 2 orbits.
- Current codes unable to calculate SF along critical orbit. Use extrapolation from $b > b_c(v)$ instead.

SF-informed PM resummation

o Introduce

$$
\Delta \chi(\nu,b):=A_0\left[\log\left(1-\frac{b_c(\nu)(1-\epsilon A_1/A_0)}{b}\right)+\sum_{k=1}^4\frac{1}{k}\left(\frac{b_c(\nu)(1-\epsilon A_1/A_0)}{b}\right)^k\right]
$$

\n- $$
\Delta \chi = O(b^{-5})
$$
 as $b \to \infty$
\n- Matches the $b \to b_c(v)$ divergences of $\chi(v, b)$ at both OSF and 1SF.
\n

• Resummed scatter angle:

$$
\tilde{\chi}(v,b) := \chi_{\rm 4PM}(v,b) + \Delta \chi(v,b).
$$

- \triangleright Matches $b \rightarrow \infty$ behaviour of χ through 4PM order.
- ► Matches $b \to b_c(v)$ behaviour at OSF and 1SF.
- Similar to geodesic order approach introduced in Damour & Rettegno 2023], but extended to 1SF.

 Ω

.

High-velocity limit

- Large- ℓ modes become more important at high velocities.
- Delayed transition to asymptotic behaviour in mode-sum.
	- \blacktriangleright Possibly associated with relativistic beaming.
- $\bullet \ell > 15$ modes can contribute up to a few percent of the total SF.

Figure: regularised ℓ -mode contributions to $\nabla_t \Phi^R$ at given points along example low and high velocity orbits.

- **•** Effect largest near periapsis, where FD code can handle $\ell_{\rm max} > 15$.
- Motivated development of TD/FD hybrid approach.

Hybrid TD-FD model

Hybridisation at the level of the data:

- Run TD and FD codes separately.
- FD code output contains the value of $\ell_{\rm max}^{\rm FD}$ at each sample position along the orbit.
- FD self-force data used in region $r_{p} \leq r_{\mathrm{switch}}$ where $\ell_{\max}^{\mathrm{FD}} \geq 15$.
- **o** TD data used elsewhere.

Figure: F_t along the orbit $(v, b) = (0.7, 6.71307M)$ as

calculated using the TD, FD and hybrid methods.

Hybrid approach utilises the most accurate method in each region to construct an optimal SF data set.

 Ω

Calculating $A_1(v)$ by extrapolation

• Fits performed in Mathematica, weighting each scatter angle by $1/\epsilon_{\text{num}}^2$.

Effect of varying number of points included in fit: investigated and incorporated into error bars on $A_1^{\rm cons/diss}$ cons/uiss
1

 Ω

Figure: numerical results for $A_1(v)$ with quadratic best fit functions $A_1(v) \sim a + bv + cv^2$.

Resummation: 1SF scatter angle correction [OL, CW & LB 2406.08363]

Figure: the resummation procedure significantly improves agreement with the numerical SF data, even in the weak-field. ($v = 0.5$)

 QQ

Resummation: total scatter angle [OL, CW & LB 2406.08363]

Figure: $\chi^{0SF} + 0.1\chi^{1SF}$ for $v = 0.5$. Our 1SF resummation improves upon the geodesic order resummation in the $\delta b \rightarrow 0$ limit.

Whittall, Long and Barack [Self-force scattering](#page-0-0) NUS 17/06/2024 16 / 17

 QQ

Summary and outlook

Resummed PM provides semi-analytical model which is fast to evaluate and accurate in both strong and weak-field at 1SF.

Next steps:

- Direct calculation of $A_1(v)$ as integral over critical orbit should increase accuracy and decrease computational burden.
- **•** Framework easily extends to gravity once GSF available.
- Ongoing work to obtain analytical results for SF at large radius.

