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Scatter orbits

Particle starts at radial infinity at early times with velocity v and impact
parameter b:

b= _lim_r(r)sin|op(r) — 2p(—00)]. 1)

T——00

Provided b > b.it(v), particle scatters off central black hole, approaching
to within periapsis distance fpin.

Chris Whittall (Southampton) FD Approach to Self-Force in Scattering 26th Capra, Niels Bohr Inst. 2 /16



Scatter orbits

The scatter angle is defined:
6% = Pout — Pin — T (2)
Fixing (b, v), this can be split into a geodesic part and SF corrections:

5o = 80 4 nop® 412503 + . (3)
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Motivation

@ Theoretical interest:
e Clean, well-defined asymptotic
in/out states
o Probe strong-field (sub-ISCO)
region even at low energies
e Boundary-to-bound [Kalin &
Porto 2020] relations between
scatter and bound orbit
observables, derived using
effective-field-theory.

@ Conservative PM dynamics can
be inferred from SF scatter
angles, valid at all mass ratios
[Damour 2020]:

1SF = 4PM.

Comparison with quantum
amplitude methods (e.g. double
copy). [talks by Andres Luna,
Olly Long]

Benchmark PM results in the
strong-field regime.
PM results can be used to

calibrate effective-one-body
models.

e Inform universal model of
BBH inspirals, suitable for
GW searches.
Scatter orbits are unlikely
observational candidates
themselves.
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Frequency-domain methods

@ Time-domain (TD) methods provide a priori simplest route to
self-force calculations along scatter orbits. [Barack and Long 2022]

e Frequency-domain (FD) methods valued for accuracy and efficiency
with bound orbits.

@ FD methods expected to retain these advantages, but challenges
must be overcome:

Continuous spectrum.

o Failure of EHS method.

e Slowly convergent radial integrals.

e Cancellation during TD reconstruction.

Use a scalar-field toy model in Schwarzschild to investigate and manage
these problems. See arXiv:2305.09724 for details.
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Scalar-field model

@ The scalar field equation is given by
V., VHd = —47T, (4)

where the scalar charge density T is that of a point particle.

@ We separate into spherical and Fourier harmonics:

/ dwz “tmw(r) Yem(0, p)e ™. (5)

@ The field equation becomes

dzwémw
dr?

— (Ve(r) = w?)emo = Sema(r)- (6)
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Solutions

First step: introduce basis of homogeneous solutions wi obeying retarded
BCs at one boundary each:

VE (r) — eEier as r, — +00. (7)

Two approaches:
@ Variation of parameters: solve for physical inhomogeneous field
wﬁmw'
o SF reconstruction suffers from Gibbs phenomenon: slow (o w™1),
non-uniform convergence. Impractical.

@ Extended homogeneous solutions (EHS): reconstruct SF modes
separately on either side of the orbit using suitably normalised
frequency-domain homogeneous solutions.

e Exponential, uniform convergence
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Extended homogeneous solutions

@ The EHS method relies crucially on the compactness of the source.

@ EHS cannot a priori be used to reconstruct the SF modes in the
“external” region r > r,(t) for unbounded orbits.

@ For unbound orbits, SF modes in the “internal” region r < r,(t) may
still be reconstructed from the frequency-domain EHS

too W’L(H)Semw(r')

Wi, f(r') dr' (8)

Tl =) |

min

We use EHS and one-sided mode-sum regularisation
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Truncation problem
@ Need to evaluate the normalisation integrals,

o /r+°° V() Sem(r')

/
mo 1 W) ©)

min

which stretch over the (unbounded) radial extent of the orbit.

@ Slow, oscillatory convergence:

—— IBP4corr6
problems when truncated at 1077 | — iBpacomo
f- t —— IBPOcorré
INITE€ Imax- 10-° IBPOCOITO
@ Developed solutions: = 10-1
. . =
@ Tail corrections: use large-r = o [BPacoTS v IBPACOT0
approximation to integrand to 2
. . . = 1074
derive analytical estimates to
the neglected tail. 10747
@ Integration by parts (IBP): 107 o
. 2.6 2.7 2.8 2.9
use IBP to increase decay rate T e e 1o s 1 o
of integrand. M
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C, . spectra

Imw

Example C,,., spectra for orbit £ = 1.1, nyi, = 4M. Note QNM features.
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Self-force

FD code agrees better with regularisation parameters at this radius
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Self-force

Good agreement with TD code near periapsis. Rapid deterioration in FD

code as r increased.
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Cancellation problem

o Large-¢ modes blow up rapidly
with increasing radius.

101 e r,=4.02M inbound
rp = 6M inbound ° 1

o Low-frequency Fourier modes of =~ ) © 7=l -

the EHS field grow rapidly: w0r ] R

® . .
Dy (1) ~ T (wr < 1), 0% S
(10) Wil :
@ Increasing cancellation between I I T I
1

low-w EHS modes to match

physical TD field. [van de

Meent 2016] @ Higher precision arithmetic

unsuitable for scatter problem.

@ Problem intrinsic to EHS o We mitigate using dynamic ¢

method. truncation in the mode sum.
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Self-force (dynamic #y,ax)

Prevents catastrophic blow up, but still lose accuracy gradually.
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Scatter angle

@ Can use the FD-calculated SF to calculate scatter angle corrections:

Spl iy & —15032, 0t~ 27035 (Awax =50M). (1)

@ Discrepancy of approx 1.8% (0.31%) in conservative (dissipative)
piece compared to equivalent TD calculation.

e Compares to errors of approx 4.1% and 2.5% from truncating at
Fmax = DOM.

Large-r issue is a limiting factor for the scatter angle calculation
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Conclusion and outlook

We have demonstrated a frequency-domain method to calculate the
self-force along hyperbolic geodesics in the Schwarzschild spacetime,
overcoming several issues with the extension to unbound orbits:

@ FD method displays superior accuracy to the TD code at smaller radii.

@ FD method suffers rapidly loss of accuracy with increasing orbital
radius due to known cancellation problem.

Future work (in collaboration with Leor Barack and Olly Long):
o Investigating benefits of FD/TD hybridisation.
@ Investigating FD performance for weak-field orbits.
@ Analytical calculation for self-force at early/late times.

@ Investigate possible alternatives to the use of EHS.
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