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Unbound Orbits in the Frequency Domain

m FD codes are faster than TD and more accurate for bound
orbits.

m FD codes exist to calculate 1st order GSF on arbitrary bound
Kerr geodesics [Van de Meent 2017].

m Using scalar field toy model (in Schwarzschild) to investigate
and develop solutions to challenges with the unbound case:

m Continuous spectrum

m UV problem near particle and method of extended
homogeneous solutions

m Slowly convergent radial integral

m IR problem



Equations of Motion

The scalar field equation of motion is given by
V., Vi = —47T (1)

and the scalar charge density T is that of a point particle. We
separate into spherical and Fourier harmonics:
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and the equation of motion becomes
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Inhomogeneous Solutions (bound case)

Inhomogeneous solutions can be found using variation of
parameters. Considering first a bound orbit:
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obeys the relevant BCs.

For w # 0 the homogeneous solutions wztmw are defined by BCs:

Yy (r) ~ e ™ asr — —o0 (4)

i (r) ~ et asr, — 4o0. (5)



Extended Homogeneous Solutions
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Figure: Convergence of Fourier series for scalar monopole (Schwarzschild
eccentric orbit) [Barack, Ori, Sago 2008]

MEHS: express time domain field ®,(t, r) in terms of analytic
functions on either side of the worldline.

r®um(t, r) = P (6, )O(r — rp(t)) + Dy (£, 1)O(rp(t) — 1) (6)



Extended Homogeneous Solutions (2)

First define the extended homogeneous solutions on r > 2M

~ Imax 4/,F / S o / d ,
Finale) = i) | %%lff(rf)r )

and construct the corresponding time domain functions &i(t, r).

Key ideas:
In the source free region r > rmax, Yem(t, r) = ¥ (t,r).
Yem(t, r) and ijm(t, r) are analytic throughout r > ry(t).
Hence they must agree throughout r > ry(t).

Make a similar argument for r < rp(t).

[Barack, Ori, Sago 2008]



Inhomogeneous Solutions in the Unbound Case

For w # 0 variation of parameters again gives us the
inhomogeneous field

" Yy (F)Stmu(r') dr’
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Marginal convergence of this integral, integrand
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oscillations
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Sample Spectrum
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Figure: 1., (r = 6M) vs frequency for the geodesic E = 1.1, rpi, = 4M
(illustrated).



EHS in unbound case: problem

m Usual EHS argument fails in exterior region for unbound orbit:
no source-free region r > rmax.

m Still holds for the interior region r < ry(t).

Bound Unbound




EHS in unbound case: possible solutions

m Could some form of EHS still apply?

m Extension into u=1/r < 0:
Scattering orbit extends to orbit in u < 0 region, periodic in
Mino time.
Need to find a global time coordinate which allows field
equation to be separated into frequency modes before this is
tractable.

m One-sided regularisation using only lower EHS.



Reconstructing Time Domain Field (Internal)

Imaginary Parts of wa(t, r=6M)
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Slowly Converging Radial Integrals

m Need to compute radial integrals extending out to co, want to
truncate at finite radius.

m Slow oscillations/r behaviour of integrand.

m In wave zone integrand can be expanded in 1/r and resulting
integrals known analytically.

Puncture integrand to get higher rate of convergence
OR Analytical correction to truncated integral

m Particularly acute for external normalisation integral.

T b (F)Spme (r')dr’
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Cme - Wémw f(r’) (9)
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The IR Problem

— Y855+ (r=6m)12Mq
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Heuristics suggest genuine power law divergence...

(10)




Resolving the IR problem: Windowed EHS

10/ — Hw Introduce a suitable window
n function, e.g.
0.6 1 H(w) = exp [*(w/wsca/e)2n]

(11)

to split solution into high and
low frequency parts.
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Assuming EHS can be applied with usual form, outside the orbit:

_ e inh EHS+ —iwt
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(12)



Reconstructing Time Domain Field (External)

Imaginary Parts of wz:(t, r=6M)
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Next Steps

Work to understand how, if at all, we can apply EHS in
external region.

Dealing with numerical issues.
m Time domain reconstruction.

m SSF calculations and effect on scatter angle and time delay.

Comparison with time-domain calculations (Oliver Long).



